BigQuery
Ingesting metadata from BigQuery requires using the bigquery module.
Important Capabilities
Capability | Status | Notes |
---|---|---|
Asset Containers | ✅ | Enabled by default. Supported for types - Project, Dataset. |
Classification | ✅ | Optionally enabled via classification.enabled . |
Column-level Lineage | ✅ | Optionally enabled via configuration. |
Data Profiling | ✅ | Optionally enabled via configuration. |
Dataset Usage | ✅ | Enabled by default, can be disabled via configuration include_usage_statistics . |
Descriptions | ✅ | Enabled by default. |
Detect Deleted Entities | ✅ | Enabled by default via stateful ingestion. |
Domains | ✅ | Supported via the domain config field. |
Partition Support | ✅ | Enabled by default, partition keys and clustering keys are supported. |
Platform Instance | ❌ | Platform instance is pre-set to the BigQuery project id. |
Schema Metadata | ✅ | Enabled by default. |
Table-Level Lineage | ✅ | Optionally enabled via configuration. |
Test Connection | ✅ | Enabled by default. |
Prerequisites
To understand how BigQuery ingestion needs to be set up, first familiarize yourself with the concepts in the diagram below:
There are two important concepts to understand and identify:
- Extractor Project: This is the project associated with a service-account, whose credentials you will be configuring in the connector. The connector uses this service-account to run jobs (including queries) within the project.
- Bigquery Projects are the projects from which table metadata, lineage, usage, and profiling data need to be collected. By default, the extractor project is included in the list of projects that DataHub collects metadata from, but you can control that by passing in a specific list of project ids that you want to collect metadata from. Read the configuration section below to understand how to limit the list of projects that DataHub extracts metadata from.
Create a datahub profile in GCP
- Create a custom role for datahub as per BigQuery docs.
- Follow the sections below to grant permissions to this role on this project and other projects.
Basic Requirements (needed for metadata ingestion)
- Identify your Extractor Project where the service account will run queries to extract metadata.
permission | Description | Capability |
---|---|---|
bigquery.jobs.create | Run jobs (e.g. queries) within the project. This only needs for the extractor project where the service account belongs | |
bigquery.jobs.list | Manage the queries that the service account has sent. This only needs for the extractor project where the service account belongs | |
bigquery.readsessions.create | Create a session for streaming large results. This only needs for the extractor project where the service account belongs | |
bigquery.readsessions.getData | Get data from the read session. This only needs for the extractor project where the service account belongs |
- Grant the following permissions to the Service Account on every project where you would like to extract metadata from
If you have multiple projects in your BigQuery setup, the role should be granted these permissions in each of the projects.
Permission | Description | Capability | Default GCP Role Which Contains This Permission |
---|---|---|---|
bigquery.datasets.get | Retrieve metadata about a dataset. | Table Metadata Extraction | roles/bigquery.metadataViewer |
bigquery.datasets.getIamPolicy | Read a dataset's IAM permissions. | Table Metadata Extraction | roles/bigquery.metadataViewer |
bigquery.tables.list | List BigQuery tables. | Table Metadata Extraction | roles/bigquery.metadataViewer |
bigquery.tables.get | Retrieve metadata for a table. | Table Metadata Extraction | roles/bigquery.metadataViewer |
bigquery.routines.get | Get Routines. Needs to retrieve metadata for a table from system table. | Table Metadata Extraction | roles/bigquery.metadataViewer |
bigquery.routines.list | List Routines. Needs to retrieve metadata for a table from system table. | Table Metadata Extraction | roles/bigquery.metadataViewer |
resourcemanager.projects.get | Get project metadata. | Table Metadata Extraction | roles/bigquery.metadataViewer |
resourcemanager.projects.list | Search projects. Needed if not setting project_ids . | Table Metadata Extraction | roles/bigquery.metadataViewer |
bigquery.jobs.listAll | List all jobs (queries) submitted by any user. Needs for Lineage extraction. | Lineage Extraction/Usage Extraction | roles/bigquery.resourceViewer |
logging.logEntries.list | Fetch log entries for lineage/usage data. Not required if use_exported_bigquery_audit_metadata is enabled. | Lineage Extraction/Usage Extraction | roles/logging.privateLogViewer |
logging.privateLogEntries.list | Fetch log entries for lineage/usage data. Not required if use_exported_bigquery_audit_metadata is enabled. | Lineage Extraction/Usage Extraction | roles/logging.privateLogViewer |
bigquery.tables.getData | Access table data to extract storage size, last updated at, data profiles etc. | Profiling | |
datacatalog.policyTags.get | Optional Get policy tags for columns with associated policy tags. This permission is required only if extract_policy_tags_from_catalog is enabled. | Policy Tag Extraction | roles/datacatalog.viewer |
Create a service account in the Extractor Project
- Setup a ServiceAccount as per BigQuery docs and assign the previously created role to this service account.
- Download a service account JSON keyfile. Example credential file:
{
"type": "service_account",
"project_id": "project-id-1234567",
"private_key_id": "d0121d0000882411234e11166c6aaa23ed5d74e0",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIyourkey\n-----END PRIVATE KEY-----",
"client_email": "test@suppproject-id-1234567.iam.gserviceaccount.com",
"client_id": "113545814931671546333",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/test%suppproject-id-1234567.iam.gserviceaccount.com"
}
To provide credentials to the source, you can either:
Set an environment variable:
$ export GOOGLE_APPLICATION_CREDENTIALS="/path/to/keyfile.json"
or
Set credential config in your source based on the credential json file. For example:
credential:
project_id: project-id-1234567
private_key_id: "d0121d0000882411234e11166c6aaa23ed5d74e0"
private_key: "-----BEGIN PRIVATE KEY-----\nMIIyourkey\n-----END PRIVATE KEY-----\n"
client_email: "test@suppproject-id-1234567.iam.gserviceaccount.com"
client_id: "123456678890"
Profiling Requirements
To profile BigQuery external tables backed by Google Drive document, you need to grant document's "Viewer" access to service account's email address (client_email
in credentials json file). To find the Google Drive document linked to BigQuery table, open the BigQuery console, locate the needed table, select "Details" from the drop-down menu in the top-right corner and refer "Source" field . To share access of Google Drive document, open the document, click "Share" in the top-right corner, add the service account's email address that needs "Viewer" access.
Lineage and Usage Computation Details
DataHub's BigQuery connector supports two approaches for extracting lineage and usage statistics:
Modern Approach (Default): use_queries_v2: true
Recommended for most users - Uses BigQuery's Information Schema for efficient metadata extraction.
- Data Source: BigQuery Information Schema (
INFORMATION_SCHEMA.JOBS*
tables) - Features:
- Advanced lineage extraction using SQL parsing
- Query entities with full query text
- Query popularity statistics and rankings
- Multi-region support via
region_qualifiers
- Table and column-level usage statistics
- Requirements:
bigquery.jobs.listAll
permission on target projects- No additional Cloud Logging permissions needed
Configuration:
source:
type: bigquery
config:
use_queries_v2: true # Default
include_queries: true # Enable query entities
include_query_usage_statistics: true # Query popularity stats
region_qualifiers: ["region-us", "region-eu"] # Multi-region support
Legacy Approach: use_queries_v2: false
Use when you need specific legacy features - Processes BigQuery audit logs for metadata extraction.
- Data Source: BigQuery audit logs (two options below)
- Features:
- Basic table-level lineage and usage statistics
upstream_lineage_in_report
debugging feature- Works with existing audit log exports
Two data source options:
Option 1: Google Cloud Logging API (Default)
source:
type: bigquery
config:
use_queries_v2: false
use_exported_bigquery_audit_metadata: false # Default
- Requirements:
logging.logEntries.list
andlogging.privateLogEntries.list
permissions - Limitations: API rate limits, potential costs for large volumes
Option 2: Pre-exported Audit Logs in BigQuery Tables
source:
type: bigquery
config:
use_queries_v2: false
use_exported_bigquery_audit_metadata: true
bigquery_audit_metadata_datasets:
- "my-project.audit_dataset"
- "another-project.audit_logs"
- Requirements:
- Pre-exported audit logs in BigQuery tables
- Tables must be named
cloudaudit_googleapis_com_data_access
- Only protoPayloads with
type.googleapis.com/google.cloud.audit.BigQueryAuditMetadata
are supported
- Benefits: No Cloud Logging API limits, better for large-scale ingestion
- Setup: Follow BigQuery audit logs export guide
- Note: The
bigquery_audit_metadata_datasets
parameter accepts datasets in$PROJECT.$DATASET
format, allowing lineage computation from multiple projects.
Profiling Details
For performance reasons, we only profile the latest partition for partitioned tables and the latest shard for sharded tables.
You can set partition explicitly with partition.partition_datetime
property if you want, though note that partition config will be applied to all partitioned tables.
Caveats
- For materialized views, lineage is dependent on logs being retained. If your GCP logging is retained for 30 days (default) and 30 days have passed since the creation of the materialized view we won't be able to get lineage for them.
CLI based Ingestion
Starter Recipe
Check out the following recipe to get started with ingestion! See below for full configuration options.
For general pointers on writing and running a recipe, see our main recipe guide.
source:
type: bigquery
config:
dataset_pattern:
allow:
- finance_bq_dataset
table_pattern:
deny:
# The exact name of the table is revenue_table_name
# The reason we have this `.*` at the beginning is because the current implmenetation of table_pattern is testing
# project_id.dataset_name.table_name
# We will improve this in the future
- .*revenue_table_name
include_table_lineage: true
include_usage_statistics: true
profiling:
enabled: true
profile_table_level_only: true
sink:
# sink configs
Config Details
- Options
- Schema
Note that a .
is used to denote nested fields in the YAML recipe.
Field | Description |
---|---|
bucket_duration Enum | One of: "DAY", "HOUR" |
column_limit integer | Maximum number of columns to process in a table. This is a low level config property which should be touched with care. This restriction is needed because excessively wide tables can result in failure to ingest the schema. Default: 300 |
convert_urns_to_lowercase boolean | Whether to convert dataset urns to lowercase. Default: False |
debug_include_full_payloads boolean | Include full payload into events. It is only for debugging and internal use. Default: False |
enable_legacy_sharded_table_support boolean | Use the legacy sharded table urn suffix added. Default: True |
enable_stateful_lineage_ingestion boolean | Enable stateful lineage ingestion. This will store lineage window timestamps after successful lineage ingestion. and will not run lineage ingestion for same timestamps in subsequent run. Default: True |
enable_stateful_profiling boolean | Enable stateful profiling. This will store profiling timestamps per dataset after successful profiling. and will not run profiling again in subsequent run if table has not been updated. Default: True |
enable_stateful_usage_ingestion boolean | Enable stateful lineage ingestion. This will store usage window timestamps after successful usage ingestion. and will not run usage ingestion for same timestamps in subsequent run. Default: True |
end_time string(date-time) | Latest date of lineage/usage to consider. Default: Current time in UTC |
exclude_empty_projects boolean | Option to exclude empty projects from being ingested. Default: False |
extra_client_options object | Additional options to pass to google.cloud.logging_v2.client.Client. Default: {} |
extract_column_lineage boolean | If enabled, generate column level lineage. Requires lineage_use_sql_parser to be enabled. Default: False |
extract_lineage_from_catalog boolean | This flag enables the data lineage extraction from Data Lineage API exposed by Google Data Catalog. NOTE: This extractor can't build views lineage. It's recommended to enable the view's DDL parsing. Read the docs to have more information about: https://cloud.google.com/data-catalog/docs/concepts/about-data-lineage Default: False |
extract_policy_tags_from_catalog boolean | This flag enables the extraction of policy tags from the Google Data Catalog API. When enabled, the extractor will fetch policy tags associated with BigQuery table columns. For more information about policy tags and column-level security, refer to the documentation: https://cloud.google.com/bigquery/docs/column-level-security-intro Default: False |
include_column_lineage_with_gcs boolean | When enabled, column-level lineage will be extracted from the gcs. Default: True |
include_data_platform_instance boolean | Whether to create a DataPlatformInstance aspect, equal to the BigQuery project id. If enabled, will cause redundancy in the browse path for BigQuery entities in the UI, because the project id is represented as the top-level container. Default: False |
include_external_url boolean | Whether to populate BigQuery Console url to Datasets/Tables Default: True |
include_queries boolean | If enabled, generate query entities associated with lineage edges. Only applicable if use_queries_v2 is enabled. Default: True |
include_query_usage_statistics boolean | If enabled, generate query popularity statistics. Only applicable if use_queries_v2 is enabled. Default: True |
include_schema_metadata boolean | Whether to ingest the BigQuery schema, i.e. projects, schemas, tables, and views. Default: True |
include_table_constraints boolean | Whether to ingest table constraints. If you know you don't use table constraints, you can disable it to save one extra query per dataset. In general it should be enabled Default: True |
include_table_lineage One of boolean, null | Option to enable/disable lineage generation. Is enabled by default. Default: True |
include_table_location_lineage boolean | If the source supports it, include table lineage to the underlying storage location. Default: True |
include_table_snapshots One of boolean, null | Whether table snapshots should be ingested. Default: True |
include_tables boolean | Whether tables should be ingested. Default: True |
include_usage_statistics boolean | Generate usage statistic Default: True |
include_view_column_lineage boolean | Populates column-level lineage for view->view and table->view lineage using DataHub's sql parser. Requires include_view_lineage to be enabled. Default: True |
include_view_lineage boolean | Populates view->view and table->view lineage using DataHub's sql parser. Default: True |
include_views boolean | Whether views should be ingested. Default: True |
incremental_lineage boolean | When enabled, emits lineage as incremental to existing lineage already in DataHub. When disabled, re-states lineage on each run. Default: False |
lineage_sql_parser_use_raw_names boolean | This parameter ignores the lowercase pattern stipulated in the SQLParser. NOTE: Ignored if lineage_use_sql_parser is False. Default: False |
lineage_use_sql_parser boolean | Use sql parser to resolve view/table lineage. Default: True |
log_page_size integer | The number of log item will be queried per page for lineage collection Default: 1000 |
match_fully_qualified_names boolean | [deprecated] Whether dataset_pattern is matched against fully qualified dataset name <project_id>.<dataset_name> . Default: True |
max_query_duration string(duration) | Correction to pad start_time and end_time with. For handling the case where the read happens within our time range but the query completion event is delayed and happens after the configured end time. Default: PT15M |
max_threads_dataset_parallelism integer | Number of worker threads to use to parallelize BigQuery Dataset Metadata Extraction. Set to 1 to disable. Default: 20 |
number_of_datasets_process_in_batch_if_profiling_enabled integer | Number of partitioned table queried in batch when getting metadata. This is a low level config property which should be touched with care. This restriction is needed because we query partitions system view which throws error if we try to touch too many tables. Default: 1000 |
options object | Any options specified here will be passed to SQLAlchemy.create_engine as kwargs. |
platform_instance One of string, null | The instance of the platform that all assets produced by this recipe belong to. This should be unique within the platform. See https://docs.datahub.com/docs/platform-instances/ for more details. Default: None |
project_on_behalf One of string, null | [Advanced] The BigQuery project in which queries are executed. Will be passed when creating a job. If not passed, falls back to the project associated with the service account. Default: None |
rate_limit boolean | Should we rate limit requests made to API. Default: False |
requests_per_min integer | Used to control number of API calls made per min. Only used when rate_limit is set to True . Default: 60 |
scheme string | Default: bigquery |
sharded_table_pattern string | The regex pattern to match sharded tables and group as one table. This is a very low level config parameter, only change if you know what you are doing, Default: ((.+\D)[_$]?)?(\d\d\d\d(?:0[1-9]|1[0-2])(?:0[1-9]|... |
start_time string(date-time) | Earliest date of lineage/usage to consider. Default: Last full day in UTC (or hour, depending on bucket_duration ). You can also specify relative time with respect to end_time such as '-7 days' Or '-7d'. Default: None |
temp_table_dataset_prefix string | If you are creating temp tables in a dataset with a particular prefix you can use this config to set the prefix for the dataset. This is to support workflows from before bigquery's introduction of temp tables. By default we use _ because of datasets that begin with an underscore are hidden by default https://cloud.google.com/bigquery/docs/datasets#dataset-naming. Default: _ |
upstream_lineage_in_report boolean | Useful for debugging lineage information. Set to True to see the raw lineage created internally. Only works with legacy approach (use_queries_v2: False ). Default: False |
use_date_sharded_audit_log_tables boolean | Whether to read date sharded tables or time partitioned tables when extracting usage from exported audit logs. Default: False |
use_exported_bigquery_audit_metadata boolean | When configured, use BigQueryAuditMetadata in bigquery_audit_metadata_datasets to compute lineage information. Default: False |
use_file_backed_cache boolean | Whether to use a file backed cache for the view definitions. Default: True |
use_queries_v2 boolean | If enabled, uses the new queries extractor to extract queries from bigquery. Default: True |
use_tables_list_query_v2 boolean | List tables using an improved query that extracts partitions and last modified timestamps more accurately. Requires the ability to read table data. Automatically enabled when profiling is enabled. Default: False |
env string | The environment that all assets produced by this connector belong to Default: PROD |
bigquery_audit_metadata_datasets One of array, null | A list of datasets that contain a table named cloudaudit_googleapis_com_data_access which contain BigQuery audit logs, specifically, those containing BigQueryAuditMetadata. It is recommended that the project of the dataset is also specified, for example, projectA.datasetB. Default: None |
bigquery_audit_metadata_datasets.string string | |
capture_dataset_label_as_tag One of boolean, AllowDenyPattern | Capture BigQuery dataset labels as DataHub tag Default: False |
capture_dataset_label_as_tag.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
capture_dataset_label_as_tag.allow array | List of regex patterns to include in ingestion Default: ['.*'] |
capture_dataset_label_as_tag.allow.string string | |
capture_dataset_label_as_tag.deny array | List of regex patterns to exclude from ingestion. Default: [] |
capture_dataset_label_as_tag.deny.string string | |
capture_table_label_as_tag One of boolean, AllowDenyPattern | Capture BigQuery table labels as DataHub tag Default: False |
capture_table_label_as_tag.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
capture_table_label_as_tag.allow array | List of regex patterns to include in ingestion Default: ['.*'] |
capture_table_label_as_tag.allow.string string | |
capture_table_label_as_tag.deny array | List of regex patterns to exclude from ingestion. Default: [] |
capture_table_label_as_tag.deny.string string | |
capture_view_label_as_tag One of boolean, AllowDenyPattern | Capture BigQuery view labels as DataHub tag Default: False |
capture_view_label_as_tag.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
capture_view_label_as_tag.allow array | List of regex patterns to include in ingestion Default: ['.*'] |
capture_view_label_as_tag.allow.string string | |
capture_view_label_as_tag.deny array | List of regex patterns to exclude from ingestion. Default: [] |
capture_view_label_as_tag.deny.string string | |
credential One of GCPCredential, null | BigQuery credential informations Default: None |
credential.client_email ❓ string | Client email |
credential.client_id ❓ string | Client Id |
credential.private_key ❓ string | Private key in a form of '-----BEGIN PRIVATE KEY-----\nprivate-key\n-----END PRIVATE KEY-----\n' |
credential.private_key_id ❓ string | Private key id |
credential.auth_provider_x509_cert_url string | Auth provider x509 certificate url |
credential.auth_uri string | Authentication uri |
credential.client_x509_cert_url One of string, null | If not set it will be default to https://www.googleapis.com/robot/v1/metadata/x509/client_email Default: None |
credential.project_id One of string, null | Project id to set the credentials Default: None |
credential.token_uri string | Token uri Default: https://oauth2.googleapis.com/token |
credential.type string | Authentication type Default: service_account |
dataset_pattern AllowDenyPattern | A class to store allow deny regexes |
dataset_pattern.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
domain map(str,AllowDenyPattern) | A class to store allow deny regexes |
domain. key .allowarray | List of regex patterns to include in ingestion Default: ['.*'] |
domain. key .allow.stringstring | |
domain. key .ignoreCaseOne of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
domain. key .denyarray | List of regex patterns to exclude from ingestion. Default: [] |
domain. key .deny.stringstring | |
gcs_lineage_config GcsLineageProviderConfig | Any source that produces gcs lineage from/to Datasets should inherit this class. |
gcs_lineage_config.ignore_non_path_spec_path boolean | Ignore paths that are not match in path_specs. It only applies if path_specs are specified. Default: False |
gcs_lineage_config.strip_urls boolean | Strip filename from gcs url. It only applies if path_specs are not specified. Default: True |
gcs_lineage_config.path_specs array | List of PathSpec. See below the details about PathSpec Default: [] |
gcs_lineage_config.path_specs.PathSpec PathSpec | |
gcs_lineage_config.path_specs.PathSpec.include ❓ string | Path to table. Name variable {table} is used to mark the folder with dataset. In absence of {table} , file level dataset will be created. Check below examples for more details. |
gcs_lineage_config.path_specs.PathSpec.allow_double_stars boolean | Allow double stars in the include path. This can affect performance significantly if enabled Default: False |
gcs_lineage_config.path_specs.PathSpec.autodetect_partitions boolean | Autodetect partition(s) from the path. If set to true, it will autodetect partition key/value if the folder format is {partition_key}={partition_value} for example year=2024 Default: True |
gcs_lineage_config.path_specs.PathSpec.default_extension One of string, null | For files without extension it will assume the specified file type. If it is not set the files without extensions will be skipped. Default: None |
gcs_lineage_config.path_specs.PathSpec.enable_compression boolean | Enable or disable processing compressed files. Currently .gz and .bz files are supported. Default: True |
gcs_lineage_config.path_specs.PathSpec.include_hidden_folders boolean | Include hidden folders in the traversal (folders starting with . or _ Default: False |
gcs_lineage_config.path_specs.PathSpec.sample_files boolean | Not listing all the files but only taking a handful amount of sample file to infer the schema. File count and file size calculation will be disabled. This can affect performance significantly if enabled Default: True |
gcs_lineage_config.path_specs.PathSpec.table_name One of string, null | Display name of the dataset.Combination of named variables from include path and strings Default: None |
gcs_lineage_config.path_specs.PathSpec.traversal_method Enum | One of: "ALL", "MIN_MAX", "MAX" |
gcs_lineage_config.path_specs.PathSpec.exclude One of array, null | list of paths in glob pattern which will be excluded while scanning for the datasets Default: [] |
gcs_lineage_config.path_specs.PathSpec.exclude.string string | |
gcs_lineage_config.path_specs.PathSpec.file_types array | Files with extenstions specified here (subset of default value) only will be scanned to create dataset. Other files will be omitted. Default: ['csv', 'tsv', 'json', 'parquet', 'avro'] |
gcs_lineage_config.path_specs.PathSpec.file_types.string string | |
gcs_lineage_config.path_specs.PathSpec.tables_filter_pattern AllowDenyPattern | A class to store allow deny regexes |
gcs_lineage_config.path_specs.PathSpec.tables_filter_pattern.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
profile_pattern AllowDenyPattern | A class to store allow deny regexes |
profile_pattern.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
project_id_pattern AllowDenyPattern | A class to store allow deny regexes |
project_id_pattern.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
project_ids array | Ingests specified project_ids. Use this property if you want to specify what projects to ingest or don't want to give project resourcemanager.projects.list to your service account. Overrides project_id_pattern . |
project_ids.string string | |
project_labels array | Ingests projects with the specified labels. Set value in the format of key:value . Use this property to define which projects to ingest basedon project-level labels. If project_ids or project_id is set, this configuration has no effect. The ingestion process filters projects by label first, and then applies the project_id_pattern. |
project_labels.string string | |
region_qualifiers array | BigQuery regions to be scanned for bigquery jobs when using use_queries_v2 . See this for details. Default: ['region-us', 'region-eu'] |
region_qualifiers.string string | |
table_pattern AllowDenyPattern | A class to store allow deny regexes |
table_pattern.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
table_snapshot_pattern AllowDenyPattern | A class to store allow deny regexes |
table_snapshot_pattern.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
usage BigQueryUsageConfig | |
usage.apply_view_usage_to_tables boolean | Whether to apply view's usage to its base tables. If set to False, uses sql parser and applies usage to views / tables mentioned in the query. If set to True, usage is applied to base tables only. Default: False |
usage.bucket_duration Enum | One of: "DAY", "HOUR" |
usage.end_time string(date-time) | Latest date of lineage/usage to consider. Default: Current time in UTC |
usage.format_sql_queries boolean | Whether to format sql queries Default: False |
usage.include_operational_stats boolean | Whether to display operational stats. Default: True |
usage.include_read_operational_stats boolean | Whether to report read operational stats. Experimental. Default: False |
usage.include_top_n_queries boolean | Whether to ingest the top_n_queries. Default: True |
usage.max_query_duration string(duration) | Correction to pad start_time and end_time with. For handling the case where the read happens within our time range but the query completion event is delayed and happens after the configured end time. Default: PT15M |
usage.start_time string(date-time) | Earliest date of lineage/usage to consider. Default: Last full day in UTC (or hour, depending on bucket_duration ). You can also specify relative time with respect to end_time such as '-7 days' Or '-7d'. Default: None |
usage.top_n_queries integer | Number of top queries to save to each table. Default: 10 |
usage.user_email_pattern AllowDenyPattern | A class to store allow deny regexes |
usage.user_email_pattern.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
view_pattern AllowDenyPattern | A class to store allow deny regexes |
view_pattern.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
classification ClassificationConfig | |
classification.enabled boolean | Whether classification should be used to auto-detect glossary terms Default: False |
classification.info_type_to_term map(str,string) | |
classification.max_workers integer | Number of worker processes to use for classification. Set to 1 to disable. Default: 4 |
classification.sample_size integer | Number of sample values used for classification. Default: 100 |
classification.classifiers array | Classifiers to use to auto-detect glossary terms. If more than one classifier, infotype predictions from the classifier defined later in sequence take precedance. Default: [{'type': 'datahub', 'config': None}] |
classification.classifiers.DynamicTypedClassifierConfig DynamicTypedClassifierConfig | |
classification.classifiers.DynamicTypedClassifierConfig.type ❓ string | The type of the classifier to use. For DataHub, use datahub |
classification.classifiers.DynamicTypedClassifierConfig.config One of object, null | The configuration required for initializing the classifier. If not specified, uses defaults for classifer type. Default: None |
classification.column_pattern AllowDenyPattern | A class to store allow deny regexes |
classification.column_pattern.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
classification.table_pattern AllowDenyPattern | A class to store allow deny regexes |
classification.table_pattern.ignoreCase One of boolean, null | Whether to ignore case sensitivity during pattern matching. Default: True |
profiling GEProfilingConfig | |
profiling.catch_exceptions boolean | Default: True |
profiling.enabled boolean | Whether profiling should be done. Default: False |
profiling.field_sample_values_limit integer | Upper limit for number of sample values to collect for all columns. Default: 20 |
profiling.include_field_distinct_count boolean | Whether to profile for the number of distinct values for each column. Default: True |
profiling.include_field_distinct_value_frequencies boolean | Whether to profile for distinct value frequencies. Default: False |
profiling.include_field_histogram boolean | Whether to profile for the histogram for numeric fields. Default: False |
profiling.include_field_max_value boolean | Whether to profile for the max value of numeric columns. Default: True |
profiling.include_field_mean_value boolean | Whether to profile for the mean value of numeric columns. Default: True |
profiling.include_field_median_value boolean | Whether to profile for the median value of numeric columns. Default: True |
profiling.include_field_min_value boolean | Whether to profile for the min value of numeric columns. Default: True |
profiling.include_field_null_count boolean | Whether to profile for the number of nulls for each column. Default: True |
profiling.include_field_quantiles boolean | Whether to profile for the quantiles of numeric columns. Default: False |
profiling.include_field_sample_values boolean | Whether to profile for the sample values for all columns. Default: True |
profiling.include_field_stddev_value boolean | Whether to profile for the standard deviation of numeric columns. Default: True |
profiling.limit One of integer, null | Max number of documents to profile. By default, profiles all documents. Default: None |
profiling.max_number_of_fields_to_profile One of integer, null | A positive integer that specifies the maximum number of columns to profile for any table. None implies all columns. The cost of profiling goes up significantly as the number of columns to profile goes up. Default: None |
profiling.max_workers integer | Number of worker threads to use for profiling. Set to 1 to disable. Default: 20 |
profiling.offset One of integer, null | Offset in documents to profile. By default, uses no offset. Default: None |
profiling.partition_datetime One of string(date-time), null | If specified, profile only the partition which matches this datetime. If not specified, profile the latest partition. Only Bigquery supports this. Default: None |
profiling.partition_profiling_enabled boolean | Whether to profile partitioned tables. Only BigQuery and Aws Athena supports this. If enabled, latest partition data is used for profiling. Default: True |
profiling.profile_external_tables boolean | Whether to profile external tables. Only Snowflake and Redshift supports this. Default: False |
profiling.profile_if_updated_since_days One of number, null | Profile table only if it has been updated since these many number of days. If set to null , no constraint of last modified time for tables to profile. Supported only in snowflake and BigQuery . Default: None |
profiling.profile_nested_fields boolean | Whether to profile complex types like structs, arrays and maps. Default: False |
profiling.profile_table_level_only boolean | Whether to perform profiling at table-level only, or include column-level profiling as well. Default: False |
profiling.profile_table_row_count_estimate_only boolean | Use an approximate query for row count. This will be much faster but slightly less accurate. Only supported for Postgres and MySQL. Default: False |
profiling.profile_table_row_limit One of integer, null | Profile tables only if their row count is less than specified count. If set to null , no limit on the row count of tables to profile. Supported only in Snowflake , BigQuery . Supported for Oracle based on gathered stats. Default: 5000000 |
profiling.profile_table_size_limit One of integer, null | Profile tables only if their size is less than specified GBs. If set to null , no limit on the size of tables to profile. Supported only in Snowflake , BigQuery and Databricks . Supported for Oracle based on calculated size from gathered stats. Default: 5 |
profiling.query_combiner_enabled boolean | This feature is still experimental and can be disabled if it causes issues. Reduces the total number of queries issued and speeds up profiling by dynamically combining SQL queries where possible. Default: True |
profiling.report_dropped_profiles boolean | Whether to report datasets or dataset columns which were not profiled. Set to True for debugging purposes. Default: False |
profiling.sample_size integer | Number of rows to be sampled from table for column level profiling.Applicable only if use_sampling is set to True. Default: 10000 |
profiling.turn_off_expensive_profiling_metrics boolean | Whether to turn off expensive profiling or not. This turns off profiling for quantiles, distinct_value_frequencies, histogram & sample_values. This also limits maximum number of fields being profiled to 10. Default: False |
profiling.use_sampling boolean | Whether to profile column level stats on sample of table. Only BigQuery and Snowflake support this. If enabled, profiling is done on rows sampled from table. Sampling is not done for smaller tables. Default: True |
profiling.operation_config OperationConfig | |
profiling.operation_config.lower_freq_profile_enabled boolean | Whether to do profiling at lower freq or not. This does not do any scheduling just adds additional checks to when not to run profiling. Default: False |
profiling.operation_config.profile_date_of_month One of integer, null | Number between 1 to 31 for date of month (both inclusive). If not specified, defaults to Nothing and this field does not take affect. Default: None |
profiling.operation_config.profile_day_of_week One of integer, null | Number between 0 to 6 for day of week (both inclusive). 0 is Monday and 6 is Sunday. If not specified, defaults to Nothing and this field does not take affect. Default: None |
profiling.tags_to_ignore_sampling One of array, null | Fixed list of tags to ignore sampling. If not specified, tables will be sampled based on use_sampling . Default: None |
profiling.tags_to_ignore_sampling.string string | |
stateful_ingestion One of StatefulStaleMetadataRemovalConfig, null | Default: None |
stateful_ingestion.enabled boolean | Whether or not to enable stateful ingest. Default: True if a pipeline_name is set and either a datahub-rest sink or datahub_api is specified, otherwise False Default: False |
stateful_ingestion.fail_safe_threshold number | Prevents large amount of soft deletes & the state from committing from accidental changes to the source configuration if the relative change percent in entities compared to the previous state is above the 'fail_safe_threshold'. Default: 75.0 |
stateful_ingestion.remove_stale_metadata boolean | Soft-deletes the entities present in the last successful run but missing in the current run with stateful_ingestion enabled. Default: True |
The JSONSchema for this configuration is inlined below.
{
"$defs": {
"AllowDenyPattern": {
"additionalProperties": false,
"description": "A class to store allow deny regexes",
"properties": {
"allow": {
"default": [
".*"
],
"description": "List of regex patterns to include in ingestion",
"items": {
"type": "string"
},
"title": "Allow",
"type": "array"
},
"deny": {
"default": [],
"description": "List of regex patterns to exclude from ingestion.",
"items": {
"type": "string"
},
"title": "Deny",
"type": "array"
},
"ignoreCase": {
"anyOf": [
{
"type": "boolean"
},
{
"type": "null"
}
],
"default": true,
"description": "Whether to ignore case sensitivity during pattern matching.",
"title": "Ignorecase"
}
},
"title": "AllowDenyPattern",
"type": "object"
},
"BigQueryUsageConfig": {
"additionalProperties": false,
"properties": {
"bucket_duration": {
"$ref": "#/$defs/BucketDuration",
"default": "DAY",
"description": "Size of the time window to aggregate usage stats."
},
"end_time": {
"description": "Latest date of lineage/usage to consider. Default: Current time in UTC",
"format": "date-time",
"title": "End Time",
"type": "string"
},
"start_time": {
"default": null,
"description": "Earliest date of lineage/usage to consider. Default: Last full day in UTC (or hour, depending on `bucket_duration`). You can also specify relative time with respect to end_time such as '-7 days' Or '-7d'.",
"format": "date-time",
"title": "Start Time",
"type": "string"
},
"top_n_queries": {
"default": 10,
"description": "Number of top queries to save to each table.",
"exclusiveMinimum": 0,
"title": "Top N Queries",
"type": "integer"
},
"user_email_pattern": {
"$ref": "#/$defs/AllowDenyPattern",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"description": "regex patterns for user emails to filter in usage."
},
"include_operational_stats": {
"default": true,
"description": "Whether to display operational stats.",
"title": "Include Operational Stats",
"type": "boolean"
},
"include_read_operational_stats": {
"default": false,
"description": "Whether to report read operational stats. Experimental.",
"title": "Include Read Operational Stats",
"type": "boolean"
},
"format_sql_queries": {
"default": false,
"description": "Whether to format sql queries",
"title": "Format Sql Queries",
"type": "boolean"
},
"include_top_n_queries": {
"default": true,
"description": "Whether to ingest the top_n_queries.",
"title": "Include Top N Queries",
"type": "boolean"
},
"max_query_duration": {
"default": "PT15M",
"description": "Correction to pad start_time and end_time with. For handling the case where the read happens within our time range but the query completion event is delayed and happens after the configured end time.",
"format": "duration",
"title": "Max Query Duration",
"type": "string"
},
"apply_view_usage_to_tables": {
"default": false,
"description": "Whether to apply view's usage to its base tables. If set to False, uses sql parser and applies usage to views / tables mentioned in the query. If set to True, usage is applied to base tables only.",
"title": "Apply View Usage To Tables",
"type": "boolean"
}
},
"title": "BigQueryUsageConfig",
"type": "object"
},
"BucketDuration": {
"enum": [
"DAY",
"HOUR"
],
"title": "BucketDuration",
"type": "string"
},
"ClassificationConfig": {
"additionalProperties": false,
"properties": {
"enabled": {
"default": false,
"description": "Whether classification should be used to auto-detect glossary terms",
"title": "Enabled",
"type": "boolean"
},
"sample_size": {
"default": 100,
"description": "Number of sample values used for classification.",
"title": "Sample Size",
"type": "integer"
},
"max_workers": {
"default": 4,
"description": "Number of worker processes to use for classification. Set to 1 to disable.",
"title": "Max Workers",
"type": "integer"
},
"table_pattern": {
"$ref": "#/$defs/AllowDenyPattern",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"description": "Regex patterns to filter tables for classification. This is used in combination with other patterns in parent config. Specify regex to match the entire table name in `database.schema.table` format. e.g. to match all tables starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'"
},
"column_pattern": {
"$ref": "#/$defs/AllowDenyPattern",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"description": "Regex patterns to filter columns for classification. This is used in combination with other patterns in parent config. Specify regex to match the column name in `database.schema.table.column` format."
},
"info_type_to_term": {
"additionalProperties": {
"type": "string"
},
"default": {},
"description": "Optional mapping to provide glossary term identifier for info type",
"title": "Info Type To Term",
"type": "object"
},
"classifiers": {
"default": [
{
"type": "datahub",
"config": null
}
],
"description": "Classifiers to use to auto-detect glossary terms. If more than one classifier, infotype predictions from the classifier defined later in sequence take precedance.",
"items": {
"$ref": "#/$defs/DynamicTypedClassifierConfig"
},
"title": "Classifiers",
"type": "array"
}
},
"title": "ClassificationConfig",
"type": "object"
},
"DynamicTypedClassifierConfig": {
"additionalProperties": false,
"properties": {
"type": {
"description": "The type of the classifier to use. For DataHub, use `datahub`",
"title": "Type",
"type": "string"
},
"config": {
"anyOf": [
{},
{
"type": "null"
}
],
"default": null,
"description": "The configuration required for initializing the classifier. If not specified, uses defaults for classifer type.",
"title": "Config"
}
},
"required": [
"type"
],
"title": "DynamicTypedClassifierConfig",
"type": "object"
},
"FolderTraversalMethod": {
"enum": [
"ALL",
"MIN_MAX",
"MAX"
],
"title": "FolderTraversalMethod",
"type": "string"
},
"GCPCredential": {
"additionalProperties": false,
"properties": {
"project_id": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Project id to set the credentials",
"title": "Project Id"
},
"private_key_id": {
"description": "Private key id",
"title": "Private Key Id",
"type": "string"
},
"private_key": {
"description": "Private key in a form of '-----BEGIN PRIVATE KEY-----\\nprivate-key\\n-----END PRIVATE KEY-----\\n'",
"title": "Private Key",
"type": "string"
},
"client_email": {
"description": "Client email",
"title": "Client Email",
"type": "string"
},
"client_id": {
"description": "Client Id",
"title": "Client Id",
"type": "string"
},
"auth_uri": {
"default": "https://accounts.google.com/o/oauth2/auth",
"description": "Authentication uri",
"title": "Auth Uri",
"type": "string"
},
"token_uri": {
"default": "https://oauth2.googleapis.com/token",
"description": "Token uri",
"title": "Token Uri",
"type": "string"
},
"auth_provider_x509_cert_url": {
"default": "https://www.googleapis.com/oauth2/v1/certs",
"description": "Auth provider x509 certificate url",
"title": "Auth Provider X509 Cert Url",
"type": "string"
},
"type": {
"default": "service_account",
"description": "Authentication type",
"title": "Type",
"type": "string"
},
"client_x509_cert_url": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "If not set it will be default to https://www.googleapis.com/robot/v1/metadata/x509/client_email",
"title": "Client X509 Cert Url"
}
},
"required": [
"private_key_id",
"private_key",
"client_email",
"client_id"
],
"title": "GCPCredential",
"type": "object"
},
"GEProfilingConfig": {
"additionalProperties": false,
"properties": {
"enabled": {
"default": false,
"description": "Whether profiling should be done.",
"title": "Enabled",
"type": "boolean"
},
"operation_config": {
"$ref": "#/$defs/OperationConfig",
"description": "Experimental feature. To specify operation configs."
},
"limit": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "Max number of documents to profile. By default, profiles all documents.",
"title": "Limit"
},
"offset": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "Offset in documents to profile. By default, uses no offset.",
"title": "Offset"
},
"profile_table_level_only": {
"default": false,
"description": "Whether to perform profiling at table-level only, or include column-level profiling as well.",
"title": "Profile Table Level Only",
"type": "boolean"
},
"include_field_null_count": {
"default": true,
"description": "Whether to profile for the number of nulls for each column.",
"title": "Include Field Null Count",
"type": "boolean"
},
"include_field_distinct_count": {
"default": true,
"description": "Whether to profile for the number of distinct values for each column.",
"title": "Include Field Distinct Count",
"type": "boolean"
},
"include_field_min_value": {
"default": true,
"description": "Whether to profile for the min value of numeric columns.",
"title": "Include Field Min Value",
"type": "boolean"
},
"include_field_max_value": {
"default": true,
"description": "Whether to profile for the max value of numeric columns.",
"title": "Include Field Max Value",
"type": "boolean"
},
"include_field_mean_value": {
"default": true,
"description": "Whether to profile for the mean value of numeric columns.",
"title": "Include Field Mean Value",
"type": "boolean"
},
"include_field_median_value": {
"default": true,
"description": "Whether to profile for the median value of numeric columns.",
"title": "Include Field Median Value",
"type": "boolean"
},
"include_field_stddev_value": {
"default": true,
"description": "Whether to profile for the standard deviation of numeric columns.",
"title": "Include Field Stddev Value",
"type": "boolean"
},
"include_field_quantiles": {
"default": false,
"description": "Whether to profile for the quantiles of numeric columns.",
"title": "Include Field Quantiles",
"type": "boolean"
},
"include_field_distinct_value_frequencies": {
"default": false,
"description": "Whether to profile for distinct value frequencies.",
"title": "Include Field Distinct Value Frequencies",
"type": "boolean"
},
"include_field_histogram": {
"default": false,
"description": "Whether to profile for the histogram for numeric fields.",
"title": "Include Field Histogram",
"type": "boolean"
},
"include_field_sample_values": {
"default": true,
"description": "Whether to profile for the sample values for all columns.",
"title": "Include Field Sample Values",
"type": "boolean"
},
"max_workers": {
"default": 20,
"description": "Number of worker threads to use for profiling. Set to 1 to disable.",
"title": "Max Workers",
"type": "integer"
},
"report_dropped_profiles": {
"default": false,
"description": "Whether to report datasets or dataset columns which were not profiled. Set to `True` for debugging purposes.",
"title": "Report Dropped Profiles",
"type": "boolean"
},
"turn_off_expensive_profiling_metrics": {
"default": false,
"description": "Whether to turn off expensive profiling or not. This turns off profiling for quantiles, distinct_value_frequencies, histogram & sample_values. This also limits maximum number of fields being profiled to 10.",
"title": "Turn Off Expensive Profiling Metrics",
"type": "boolean"
},
"field_sample_values_limit": {
"default": 20,
"description": "Upper limit for number of sample values to collect for all columns.",
"title": "Field Sample Values Limit",
"type": "integer"
},
"max_number_of_fields_to_profile": {
"anyOf": [
{
"exclusiveMinimum": 0,
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "A positive integer that specifies the maximum number of columns to profile for any table. `None` implies all columns. The cost of profiling goes up significantly as the number of columns to profile goes up.",
"title": "Max Number Of Fields To Profile"
},
"profile_if_updated_since_days": {
"anyOf": [
{
"exclusiveMinimum": 0,
"type": "number"
},
{
"type": "null"
}
],
"default": null,
"description": "Profile table only if it has been updated since these many number of days. If set to `null`, no constraint of last modified time for tables to profile. Supported only in `snowflake` and `BigQuery`.",
"schema_extra": {
"supported_sources": [
"snowflake",
"bigquery"
]
},
"title": "Profile If Updated Since Days"
},
"profile_table_size_limit": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": 5,
"description": "Profile tables only if their size is less than specified GBs. If set to `null`, no limit on the size of tables to profile. Supported only in `Snowflake`, `BigQuery` and `Databricks`. Supported for `Oracle` based on calculated size from gathered stats.",
"schema_extra": {
"supported_sources": [
"snowflake",
"bigquery",
"unity-catalog",
"oracle"
]
},
"title": "Profile Table Size Limit"
},
"profile_table_row_limit": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": 5000000,
"description": "Profile tables only if their row count is less than specified count. If set to `null`, no limit on the row count of tables to profile. Supported only in `Snowflake`, `BigQuery`. Supported for `Oracle` based on gathered stats.",
"schema_extra": {
"supported_sources": [
"snowflake",
"bigquery",
"oracle"
]
},
"title": "Profile Table Row Limit"
},
"profile_table_row_count_estimate_only": {
"default": false,
"description": "Use an approximate query for row count. This will be much faster but slightly less accurate. Only supported for Postgres and MySQL. ",
"schema_extra": {
"supported_sources": [
"postgres",
"mysql"
]
},
"title": "Profile Table Row Count Estimate Only",
"type": "boolean"
},
"query_combiner_enabled": {
"default": true,
"description": "*This feature is still experimental and can be disabled if it causes issues.* Reduces the total number of queries issued and speeds up profiling by dynamically combining SQL queries where possible.",
"title": "Query Combiner Enabled",
"type": "boolean"
},
"catch_exceptions": {
"default": true,
"description": "",
"title": "Catch Exceptions",
"type": "boolean"
},
"partition_profiling_enabled": {
"default": true,
"description": "Whether to profile partitioned tables. Only BigQuery and Aws Athena supports this. If enabled, latest partition data is used for profiling.",
"schema_extra": {
"supported_sources": [
"athena",
"bigquery"
]
},
"title": "Partition Profiling Enabled",
"type": "boolean"
},
"partition_datetime": {
"anyOf": [
{
"format": "date-time",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "If specified, profile only the partition which matches this datetime. If not specified, profile the latest partition. Only Bigquery supports this.",
"schema_extra": {
"supported_sources": [
"bigquery"
]
},
"title": "Partition Datetime"
},
"use_sampling": {
"default": true,
"description": "Whether to profile column level stats on sample of table. Only BigQuery and Snowflake support this. If enabled, profiling is done on rows sampled from table. Sampling is not done for smaller tables. ",
"schema_extra": {
"supported_sources": [
"bigquery",
"snowflake"
]
},
"title": "Use Sampling",
"type": "boolean"
},
"sample_size": {
"default": 10000,
"description": "Number of rows to be sampled from table for column level profiling.Applicable only if `use_sampling` is set to True.",
"schema_extra": {
"supported_sources": [
"bigquery",
"snowflake"
]
},
"title": "Sample Size",
"type": "integer"
},
"profile_external_tables": {
"default": false,
"description": "Whether to profile external tables. Only Snowflake and Redshift supports this.",
"schema_extra": {
"supported_sources": [
"redshift",
"snowflake"
]
},
"title": "Profile External Tables",
"type": "boolean"
},
"tags_to_ignore_sampling": {
"anyOf": [
{
"items": {
"type": "string"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Fixed list of tags to ignore sampling. If not specified, tables will be sampled based on `use_sampling`.",
"title": "Tags To Ignore Sampling"
},
"profile_nested_fields": {
"default": false,
"description": "Whether to profile complex types like structs, arrays and maps. ",
"title": "Profile Nested Fields",
"type": "boolean"
}
},
"title": "GEProfilingConfig",
"type": "object"
},
"GcsLineageProviderConfig": {
"additionalProperties": false,
"description": "Any source that produces gcs lineage from/to Datasets should inherit this class.",
"properties": {
"path_specs": {
"default": [],
"description": "List of PathSpec. See below the details about PathSpec",
"items": {
"$ref": "#/$defs/PathSpec"
},
"title": "Path Specs",
"type": "array"
},
"strip_urls": {
"default": true,
"description": "Strip filename from gcs url. It only applies if path_specs are not specified.",
"title": "Strip Urls",
"type": "boolean"
},
"ignore_non_path_spec_path": {
"default": false,
"description": "Ignore paths that are not match in path_specs. It only applies if path_specs are specified.",
"title": "Ignore Non Path Spec Path",
"type": "boolean"
}
},
"title": "GcsLineageProviderConfig",
"type": "object"
},
"OperationConfig": {
"additionalProperties": false,
"properties": {
"lower_freq_profile_enabled": {
"default": false,
"description": "Whether to do profiling at lower freq or not. This does not do any scheduling just adds additional checks to when not to run profiling.",
"title": "Lower Freq Profile Enabled",
"type": "boolean"
},
"profile_day_of_week": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "Number between 0 to 6 for day of week (both inclusive). 0 is Monday and 6 is Sunday. If not specified, defaults to Nothing and this field does not take affect.",
"title": "Profile Day Of Week"
},
"profile_date_of_month": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "Number between 1 to 31 for date of month (both inclusive). If not specified, defaults to Nothing and this field does not take affect.",
"title": "Profile Date Of Month"
}
},
"title": "OperationConfig",
"type": "object"
},
"PathSpec": {
"additionalProperties": false,
"properties": {
"include": {
"description": "Path to table. Name variable `{table}` is used to mark the folder with dataset. In absence of `{table}`, file level dataset will be created. Check below examples for more details.",
"title": "Include",
"type": "string"
},
"exclude": {
"anyOf": [
{
"items": {
"type": "string"
},
"type": "array"
},
{
"type": "null"
}
],
"default": [],
"description": "list of paths in glob pattern which will be excluded while scanning for the datasets",
"title": "Exclude"
},
"file_types": {
"default": [
"csv",
"tsv",
"json",
"parquet",
"avro"
],
"description": "Files with extenstions specified here (subset of default value) only will be scanned to create dataset. Other files will be omitted.",
"items": {
"type": "string"
},
"title": "File Types",
"type": "array"
},
"default_extension": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "For files without extension it will assume the specified file type. If it is not set the files without extensions will be skipped.",
"title": "Default Extension"
},
"table_name": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Display name of the dataset.Combination of named variables from include path and strings",
"title": "Table Name"
},
"enable_compression": {
"default": true,
"description": "Enable or disable processing compressed files. Currently .gz and .bz files are supported.",
"title": "Enable Compression",
"type": "boolean"
},
"sample_files": {
"default": true,
"description": "Not listing all the files but only taking a handful amount of sample file to infer the schema. File count and file size calculation will be disabled. This can affect performance significantly if enabled",
"title": "Sample Files",
"type": "boolean"
},
"allow_double_stars": {
"default": false,
"description": "Allow double stars in the include path. This can affect performance significantly if enabled",
"title": "Allow Double Stars",
"type": "boolean"
},
"autodetect_partitions": {
"default": true,
"description": "Autodetect partition(s) from the path. If set to true, it will autodetect partition key/value if the folder format is {partition_key}={partition_value} for example `year=2024`",
"title": "Autodetect Partitions",
"type": "boolean"
},
"traversal_method": {
"$ref": "#/$defs/FolderTraversalMethod",
"default": "MAX",
"description": "Method to traverse the folder. ALL: Traverse all the folders, MIN_MAX: Traverse the folders by finding min and max value, MAX: Traverse the folder with max value"
},
"include_hidden_folders": {
"default": false,
"description": "Include hidden folders in the traversal (folders starting with . or _",
"title": "Include Hidden Folders",
"type": "boolean"
},
"tables_filter_pattern": {
"$ref": "#/$defs/AllowDenyPattern",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"description": "The tables_filter_pattern configuration field uses regular expressions to filter the tables part of the Pathspec for ingestion, allowing fine-grained control over which tables are included or excluded based on specified patterns. The default setting allows all tables."
}
},
"required": [
"include"
],
"title": "PathSpec",
"type": "object"
},
"StatefulStaleMetadataRemovalConfig": {
"additionalProperties": false,
"description": "Base specialized config for Stateful Ingestion with stale metadata removal capability.",
"properties": {
"enabled": {
"default": false,
"description": "Whether or not to enable stateful ingest. Default: True if a pipeline_name is set and either a datahub-rest sink or `datahub_api` is specified, otherwise False",
"title": "Enabled",
"type": "boolean"
},
"remove_stale_metadata": {
"default": true,
"description": "Soft-deletes the entities present in the last successful run but missing in the current run with stateful_ingestion enabled.",
"title": "Remove Stale Metadata",
"type": "boolean"
},
"fail_safe_threshold": {
"default": 75.0,
"description": "Prevents large amount of soft deletes & the state from committing from accidental changes to the source configuration if the relative change percent in entities compared to the previous state is above the 'fail_safe_threshold'.",
"maximum": 100.0,
"minimum": 0.0,
"title": "Fail Safe Threshold",
"type": "number"
}
},
"title": "StatefulStaleMetadataRemovalConfig",
"type": "object"
}
},
"additionalProperties": false,
"properties": {
"table_pattern": {
"$ref": "#/$defs/AllowDenyPattern",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"description": "Regex patterns for tables to filter in ingestion. Specify regex to match the entire table name in database.schema.table format. e.g. to match all tables starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'"
},
"view_pattern": {
"$ref": "#/$defs/AllowDenyPattern",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"description": "Regex patterns for views to filter in ingestion. Note: Defaults to table_pattern if not specified. Specify regex to match the entire view name in database.schema.view format. e.g. to match all views starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'"
},
"classification": {
"$ref": "#/$defs/ClassificationConfig",
"default": {
"enabled": false,
"sample_size": 100,
"max_workers": 4,
"table_pattern": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"column_pattern": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"info_type_to_term": {},
"classifiers": [
{
"config": null,
"type": "datahub"
}
]
},
"description": "For details, refer to [Classification](../../../../metadata-ingestion/docs/dev_guides/classification.md)."
},
"enable_stateful_profiling": {
"default": true,
"description": "Enable stateful profiling. This will store profiling timestamps per dataset after successful profiling. and will not run profiling again in subsequent run if table has not been updated. ",
"title": "Enable Stateful Profiling",
"type": "boolean"
},
"enable_stateful_lineage_ingestion": {
"default": true,
"description": "Enable stateful lineage ingestion. This will store lineage window timestamps after successful lineage ingestion. and will not run lineage ingestion for same timestamps in subsequent run. ",
"title": "Enable Stateful Lineage Ingestion",
"type": "boolean"
},
"bucket_duration": {
"$ref": "#/$defs/BucketDuration",
"default": "DAY",
"description": "Size of the time window to aggregate usage stats."
},
"end_time": {
"description": "Latest date of lineage/usage to consider. Default: Current time in UTC",
"format": "date-time",
"title": "End Time",
"type": "string"
},
"start_time": {
"default": null,
"description": "Earliest date of lineage/usage to consider. Default: Last full day in UTC (or hour, depending on `bucket_duration`). You can also specify relative time with respect to end_time such as '-7 days' Or '-7d'.",
"format": "date-time",
"title": "Start Time",
"type": "string"
},
"enable_stateful_usage_ingestion": {
"default": true,
"description": "Enable stateful lineage ingestion. This will store usage window timestamps after successful usage ingestion. and will not run usage ingestion for same timestamps in subsequent run. ",
"title": "Enable Stateful Usage Ingestion",
"type": "boolean"
},
"incremental_lineage": {
"default": false,
"description": "When enabled, emits lineage as incremental to existing lineage already in DataHub. When disabled, re-states lineage on each run.",
"title": "Incremental Lineage",
"type": "boolean"
},
"convert_urns_to_lowercase": {
"default": false,
"description": "Whether to convert dataset urns to lowercase.",
"title": "Convert Urns To Lowercase",
"type": "boolean"
},
"env": {
"default": "PROD",
"description": "The environment that all assets produced by this connector belong to",
"title": "Env",
"type": "string"
},
"platform_instance": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The instance of the platform that all assets produced by this recipe belong to. This should be unique within the platform. See https://docs.datahub.com/docs/platform-instances/ for more details.",
"title": "Platform Instance"
},
"stateful_ingestion": {
"anyOf": [
{
"$ref": "#/$defs/StatefulStaleMetadataRemovalConfig"
},
{
"type": "null"
}
],
"default": null
},
"options": {
"additionalProperties": true,
"description": "Any options specified here will be passed to [SQLAlchemy.create_engine](https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine) as kwargs.",
"title": "Options",
"type": "object"
},
"profile_pattern": {
"$ref": "#/$defs/AllowDenyPattern",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"description": "Regex patterns to filter tables (or specific columns) for profiling during ingestion. Note that only tables allowed by the `table_pattern` will be considered."
},
"domain": {
"additionalProperties": {
"$ref": "#/$defs/AllowDenyPattern"
},
"default": {},
"description": "Attach domains to databases, schemas or tables during ingestion using regex patterns. Domain key can be a guid like *urn:li:domain:ec428203-ce86-4db3-985d-5a8ee6df32ba* or a string like \"Marketing\".) If you provide strings, then datahub will attempt to resolve this name to a guid, and will error out if this fails. There can be multiple domain keys specified.",
"title": "Domain",
"type": "object"
},
"include_views": {
"default": true,
"description": "Whether views should be ingested.",
"title": "Include Views",
"type": "boolean"
},
"include_tables": {
"default": true,
"description": "Whether tables should be ingested.",
"title": "Include Tables",
"type": "boolean"
},
"include_table_location_lineage": {
"default": true,
"description": "If the source supports it, include table lineage to the underlying storage location.",
"title": "Include Table Location Lineage",
"type": "boolean"
},
"include_view_lineage": {
"default": true,
"description": "Populates view->view and table->view lineage using DataHub's sql parser.",
"title": "Include View Lineage",
"type": "boolean"
},
"include_view_column_lineage": {
"default": true,
"description": "Populates column-level lineage for view->view and table->view lineage using DataHub's sql parser. Requires `include_view_lineage` to be enabled.",
"title": "Include View Column Lineage",
"type": "boolean"
},
"use_file_backed_cache": {
"default": true,
"description": "Whether to use a file backed cache for the view definitions.",
"title": "Use File Backed Cache",
"type": "boolean"
},
"profiling": {
"$ref": "#/$defs/GEProfilingConfig",
"default": {
"enabled": false,
"operation_config": {
"lower_freq_profile_enabled": false,
"profile_date_of_month": null,
"profile_day_of_week": null
},
"limit": null,
"offset": null,
"profile_table_level_only": false,
"include_field_null_count": true,
"include_field_distinct_count": true,
"include_field_min_value": true,
"include_field_max_value": true,
"include_field_mean_value": true,
"include_field_median_value": true,
"include_field_stddev_value": true,
"include_field_quantiles": false,
"include_field_distinct_value_frequencies": false,
"include_field_histogram": false,
"include_field_sample_values": true,
"max_workers": 20,
"report_dropped_profiles": false,
"turn_off_expensive_profiling_metrics": false,
"field_sample_values_limit": 20,
"max_number_of_fields_to_profile": null,
"profile_if_updated_since_days": null,
"profile_table_size_limit": 5,
"profile_table_row_limit": 5000000,
"profile_table_row_count_estimate_only": false,
"query_combiner_enabled": true,
"catch_exceptions": true,
"partition_profiling_enabled": true,
"partition_datetime": null,
"use_sampling": true,
"sample_size": 10000,
"profile_external_tables": false,
"tags_to_ignore_sampling": null,
"profile_nested_fields": false
}
},
"include_data_platform_instance": {
"default": false,
"description": "Whether to create a DataPlatformInstance aspect, equal to the BigQuery project id. If enabled, will cause redundancy in the browse path for BigQuery entities in the UI, because the project id is represented as the top-level container.",
"title": "Include Data Platform Instance",
"type": "boolean"
},
"enable_legacy_sharded_table_support": {
"default": true,
"description": "Use the legacy sharded table urn suffix added.",
"title": "Enable Legacy Sharded Table Support",
"type": "boolean"
},
"project_ids": {
"description": "Ingests specified project_ids. Use this property if you want to specify what projects to ingest or don't want to give project resourcemanager.projects.list to your service account. Overrides `project_id_pattern`.",
"items": {
"type": "string"
},
"title": "Project Ids",
"type": "array"
},
"project_labels": {
"description": "Ingests projects with the specified labels. Set value in the format of `key:value`. Use this property to define which projects to ingest basedon project-level labels. If project_ids or project_id is set, this configuration has no effect. The ingestion process filters projects by label first, and then applies the project_id_pattern.",
"items": {
"type": "string"
},
"title": "Project Labels",
"type": "array"
},
"project_id_pattern": {
"$ref": "#/$defs/AllowDenyPattern",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"description": "Regex patterns for project_id to filter in ingestion."
},
"dataset_pattern": {
"$ref": "#/$defs/AllowDenyPattern",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"description": "Regex patterns for dataset to filter in ingestion. Specify regex to only match the schema name. e.g. to match all tables in schema analytics, use the regex 'analytics'"
},
"match_fully_qualified_names": {
"default": true,
"description": "[deprecated] Whether `dataset_pattern` is matched against fully qualified dataset name `<project_id>.<dataset_name>`.",
"title": "Match Fully Qualified Names",
"type": "boolean"
},
"table_snapshot_pattern": {
"$ref": "#/$defs/AllowDenyPattern",
"default": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"description": "Regex patterns for table snapshots to filter in ingestion. Specify regex to match the entire snapshot name in database.schema.snapshot format. e.g. to match all snapshots starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'"
},
"rate_limit": {
"default": false,
"description": "Should we rate limit requests made to API.",
"title": "Rate Limit",
"type": "boolean"
},
"requests_per_min": {
"default": 60,
"description": "Used to control number of API calls made per min. Only used when `rate_limit` is set to `True`.",
"title": "Requests Per Min",
"type": "integer"
},
"temp_table_dataset_prefix": {
"default": "_",
"description": "If you are creating temp tables in a dataset with a particular prefix you can use this config to set the prefix for the dataset. This is to support workflows from before bigquery's introduction of temp tables. By default we use `_` because of datasets that begin with an underscore are hidden by default https://cloud.google.com/bigquery/docs/datasets#dataset-naming.",
"title": "Temp Table Dataset Prefix",
"type": "string"
},
"sharded_table_pattern": {
"default": "((.+\\D)[_$]?)?(\\d\\d\\d\\d(?:0[1-9]|1[0-2])(?:0[1-9]|[12][0-9]|3[01]))$",
"deprecated": true,
"description": "The regex pattern to match sharded tables and group as one table. This is a very low level config parameter, only change if you know what you are doing, ",
"title": "Sharded Table Pattern",
"type": "string"
},
"credential": {
"anyOf": [
{
"$ref": "#/$defs/GCPCredential"
},
{
"type": "null"
}
],
"default": null,
"description": "BigQuery credential informations"
},
"extra_client_options": {
"additionalProperties": true,
"default": {},
"description": "Additional options to pass to google.cloud.logging_v2.client.Client.",
"title": "Extra Client Options",
"type": "object"
},
"project_on_behalf": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "[Advanced] The BigQuery project in which queries are executed. Will be passed when creating a job. If not passed, falls back to the project associated with the service account.",
"title": "Project On Behalf"
},
"gcs_lineage_config": {
"$ref": "#/$defs/GcsLineageProviderConfig",
"default": {
"path_specs": [],
"strip_urls": true,
"ignore_non_path_spec_path": false
},
"description": "Common config for gcs lineage generation"
},
"include_schema_metadata": {
"default": true,
"description": "Whether to ingest the BigQuery schema, i.e. projects, schemas, tables, and views.",
"title": "Include Schema Metadata",
"type": "boolean"
},
"usage": {
"$ref": "#/$defs/BigQueryUsageConfig",
"default": {
"bucket_duration": "DAY",
"end_time": "2025-10-08T10:34:43.637052Z",
"start_time": "2025-10-07T00:00:00Z",
"queries_character_limit": 24000,
"top_n_queries": 10,
"user_email_pattern": {
"allow": [
".*"
],
"deny": [],
"ignoreCase": true
},
"include_operational_stats": true,
"include_read_operational_stats": false,
"format_sql_queries": false,
"include_top_n_queries": true,
"max_query_duration": "PT15M",
"apply_view_usage_to_tables": false
},
"description": "Usage related configs"
},
"include_usage_statistics": {
"default": true,
"description": "Generate usage statistic",
"title": "Include Usage Statistics",
"type": "boolean"
},
"capture_table_label_as_tag": {
"anyOf": [
{
"type": "boolean"
},
{
"$ref": "#/$defs/AllowDenyPattern"
}
],
"default": false,
"description": "Capture BigQuery table labels as DataHub tag",
"title": "Capture Table Label As Tag"
},
"capture_view_label_as_tag": {
"anyOf": [
{
"type": "boolean"
},
{
"$ref": "#/$defs/AllowDenyPattern"
}
],
"default": false,
"description": "Capture BigQuery view labels as DataHub tag",
"title": "Capture View Label As Tag"
},
"capture_dataset_label_as_tag": {
"anyOf": [
{
"type": "boolean"
},
{
"$ref": "#/$defs/AllowDenyPattern"
}
],
"default": false,
"description": "Capture BigQuery dataset labels as DataHub tag",
"title": "Capture Dataset Label As Tag"
},
"include_table_constraints": {
"default": true,
"description": "Whether to ingest table constraints. If you know you don't use table constraints, you can disable it to save one extra query per dataset. In general it should be enabled",
"title": "Include Table Constraints",
"type": "boolean"
},
"include_external_url": {
"default": true,
"description": "Whether to populate BigQuery Console url to Datasets/Tables",
"title": "Include External Url",
"type": "boolean"
},
"include_table_snapshots": {
"anyOf": [
{
"type": "boolean"
},
{
"type": "null"
}
],
"default": true,
"description": "Whether table snapshots should be ingested.",
"title": "Include Table Snapshots"
},
"debug_include_full_payloads": {
"default": false,
"description": "Include full payload into events. It is only for debugging and internal use.",
"title": "Debug Include Full Payloads",
"type": "boolean"
},
"number_of_datasets_process_in_batch_if_profiling_enabled": {
"default": 1000,
"description": "Number of partitioned table queried in batch when getting metadata. This is a low level config property which should be touched with care. This restriction is needed because we query partitions system view which throws error if we try to touch too many tables.",
"title": "Number Of Datasets Process In Batch If Profiling Enabled",
"type": "integer"
},
"use_tables_list_query_v2": {
"default": false,
"description": "List tables using an improved query that extracts partitions and last modified timestamps more accurately. Requires the ability to read table data. Automatically enabled when profiling is enabled.",
"title": "Use Tables List Query V2",
"type": "boolean"
},
"use_queries_v2": {
"default": true,
"description": "If enabled, uses the new queries extractor to extract queries from bigquery.",
"title": "Use Queries V2",
"type": "boolean"
},
"include_queries": {
"default": true,
"description": "If enabled, generate query entities associated with lineage edges. Only applicable if `use_queries_v2` is enabled.",
"title": "Include Queries",
"type": "boolean"
},
"include_query_usage_statistics": {
"default": true,
"description": "If enabled, generate query popularity statistics. Only applicable if `use_queries_v2` is enabled.",
"title": "Include Query Usage Statistics",
"type": "boolean"
},
"column_limit": {
"default": 300,
"description": "Maximum number of columns to process in a table. This is a low level config property which should be touched with care. This restriction is needed because excessively wide tables can result in failure to ingest the schema.",
"title": "Column Limit",
"type": "integer"
},
"lineage_use_sql_parser": {
"default": true,
"description": "Use sql parser to resolve view/table lineage.",
"title": "Lineage Use Sql Parser",
"type": "boolean"
},
"lineage_sql_parser_use_raw_names": {
"default": false,
"description": "This parameter ignores the lowercase pattern stipulated in the SQLParser. NOTE: Ignored if lineage_use_sql_parser is False.",
"title": "Lineage Sql Parser Use Raw Names",
"type": "boolean"
},
"extract_column_lineage": {
"default": false,
"description": "If enabled, generate column level lineage. Requires lineage_use_sql_parser to be enabled.",
"title": "Extract Column Lineage",
"type": "boolean"
},
"extract_lineage_from_catalog": {
"default": false,
"description": "This flag enables the data lineage extraction from Data Lineage API exposed by Google Data Catalog. NOTE: This extractor can't build views lineage. It's recommended to enable the view's DDL parsing. Read the docs to have more information about: https://cloud.google.com/data-catalog/docs/concepts/about-data-lineage",
"title": "Extract Lineage From Catalog",
"type": "boolean"
},
"extract_policy_tags_from_catalog": {
"default": false,
"description": "This flag enables the extraction of policy tags from the Google Data Catalog API. When enabled, the extractor will fetch policy tags associated with BigQuery table columns. For more information about policy tags and column-level security, refer to the documentation: https://cloud.google.com/bigquery/docs/column-level-security-intro",
"title": "Extract Policy Tags From Catalog",
"type": "boolean"
},
"scheme": {
"default": "bigquery",
"title": "Scheme",
"type": "string"
},
"log_page_size": {
"default": 1000,
"description": "The number of log item will be queried per page for lineage collection",
"exclusiveMinimum": 0,
"title": "Log Page Size",
"type": "integer"
},
"include_table_lineage": {
"anyOf": [
{
"type": "boolean"
},
{
"type": "null"
}
],
"default": true,
"description": "Option to enable/disable lineage generation. Is enabled by default.",
"title": "Include Table Lineage"
},
"include_column_lineage_with_gcs": {
"default": true,
"description": "When enabled, column-level lineage will be extracted from the gcs.",
"title": "Include Column Lineage With Gcs",
"type": "boolean"
},
"max_query_duration": {
"default": "PT15M",
"description": "Correction to pad start_time and end_time with. For handling the case where the read happens within our time range but the query completion event is delayed and happens after the configured end time.",
"format": "duration",
"title": "Max Query Duration",
"type": "string"
},
"bigquery_audit_metadata_datasets": {
"anyOf": [
{
"items": {
"type": "string"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "A list of datasets that contain a table named cloudaudit_googleapis_com_data_access which contain BigQuery audit logs, specifically, those containing BigQueryAuditMetadata. It is recommended that the project of the dataset is also specified, for example, projectA.datasetB.",
"title": "Bigquery Audit Metadata Datasets"
},
"use_exported_bigquery_audit_metadata": {
"default": false,
"description": "When configured, use BigQueryAuditMetadata in bigquery_audit_metadata_datasets to compute lineage information.",
"title": "Use Exported Bigquery Audit Metadata",
"type": "boolean"
},
"use_date_sharded_audit_log_tables": {
"default": false,
"description": "Whether to read date sharded tables or time partitioned tables when extracting usage from exported audit logs.",
"title": "Use Date Sharded Audit Log Tables",
"type": "boolean"
},
"upstream_lineage_in_report": {
"default": false,
"description": "Useful for debugging lineage information. Set to True to see the raw lineage created internally. Only works with legacy approach (`use_queries_v2: False`).",
"title": "Upstream Lineage In Report",
"type": "boolean"
},
"exclude_empty_projects": {
"default": false,
"description": "Option to exclude empty projects from being ingested.",
"title": "Exclude Empty Projects",
"type": "boolean"
},
"max_threads_dataset_parallelism": {
"default": 20,
"description": "Number of worker threads to use to parallelize BigQuery Dataset Metadata Extraction. Set to 1 to disable.",
"title": "Max Threads Dataset Parallelism",
"type": "integer"
},
"region_qualifiers": {
"default": [
"region-us",
"region-eu"
],
"description": "BigQuery regions to be scanned for bigquery jobs when using `use_queries_v2`. See [this](https://cloud.google.com/bigquery/docs/information-schema-jobs#scope_and_syntax) for details.",
"items": {
"type": "string"
},
"title": "Region Qualifiers",
"type": "array"
}
},
"title": "BigQueryV2Config",
"type": "object"
}
Code Coordinates
- Class Name:
datahub.ingestion.source.bigquery_v2.bigquery.BigqueryV2Source
- Browse on GitHub
Questions
If you've got any questions on configuring ingestion for BigQuery, feel free to ping us on our Slack.